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Diffusion Monte Carlo calculations are performed for ground and excited rotational states of HX(4He)N,
complexes withN e 20 andX ) F, Cl, Br. The calculations are done using ab initio He-HX intermolecular
potentials whose computation is described. Intermolecular energies and He radial and angular probability
density distributions are computed as a function of the number of solvent atoms. Excited states are calculated
using fixed-node diffusion Monte Carlo methods, and molecule-solvent angular momentum coupling is studied
as a function of cluster size and potential anisotropy. Nodal surfaces of the many-body wave function are
computed approximately by making an adiabatic Born-Oppenheimer-like separation of radial and angular
degrees of freedom of the cluster. This procedure is extended to include radial dependencies in the adiabatic
nodal function. We predict that the observed decrease in the gas-phase rotational constants for HCl and HBr
in a 4He nanodroplet will be smaller than that observed for HF, despite HF’s having the largest (by far)
gas-phase rotational constant of the three molecules. This suggests that the specifics of the solvation dynamics
of a molecule in a4He cluster are the result of a delicate interplay between the magnitude of the gas-phase
rotational constant of the molecule and the anisotropic contributions to the atom-molecule potential energy.

1. Introduction

Helium is a substance with singular properties; it has no triple
point and so is the only material known that can exist as a liquid
at absolute zero;1-4 below 2.17 K, helium-4 behaves as a
superfluid but is not a pure Bose condensate;5 liquid helium-4
has a thermal conductivity≈30 times greater than copper;1,2,6

it apparently has a supersolid phase;7-10 the 4He dimer is
renowned for its small binding energy11 (≈1 mK) and large
bond length11 (〈r〉 ≈ 100 bohr); and4He3 has been predicted to
exhibit an Efimov state.12,13In contrast, fermionic helium-3 does
not achieve superfluidity until 0.0025 K, and bound states of
the dimer and trimer do not exist at all because of the higher
zero-point energy of3HeN clusters.4,14 The threshold for the
appearance of3HeN droplets is likely to be in the range 20< N
< 40.14,15

The peculiarities of the properties of helium are only
exaggerated by confining the geometry of the system, for
example, as in a film or droplet.6,14,16,17Due to the very weak
He-He interaction, He droplets containing≈103-108 atoms
cool down very efficiently by evaporation and achieve temper-
atures of 0.37 K (4He) and 0.15 K (3He) in a free jet
expansion.6,16,18Consequently, droplets of4He are superfluid,
whereas those of3 He behave as conventional liquids.6,14

Nanodroplets of4He have been called the “ultimate spectro-
scopic matrix”19 but they also offer potential as ultracold,20

ultraclean nanoreactors;6 for example, for making and character-
izing novel chemical species,18 performing high-resolution
spectroscopy of van der Waals complexes,21,22 studying or
creating complexes of biomolecules,6,23 monitoring chemical

reactions between individual molecules,6 isolating reaction
intermediates or precursors,24 and studying the onset and nature
of superfluidity in finite-sized systems.25,26Several comprehen-
sive reviews of the field exist.6,14,16,27-30

The utility of 4He droplets can be traced in part to their
superfluid nature and in part to the efficiency of evaporative
cooling as the droplet expels atoms.6,14 Consider, for example,
the formation of molecular clusters. In a typical free jet
expansion, cluster formation occurs early in the expansion and
is followed by relatively slow cooling through two-body
collisions. The opposite happens in a4He droplet experiment.
There, the droplet picks up molecules sequentially (according
to Poisson statistics16,31,32), with the average time between
capture events greatly exceeding the time needed for each
molecule to cool through evaporation of He atoms from the
droplet. Thus, in a droplet, molecular clusters are built from
already cold molecules, and this can produce novel arrange-
ments, for example, linear chains of HCN molecules oriented
by long-range dipole-dipole interactions.18 This procedure
rather neatly avoids the usual problem of rotational motion
swamping dipole-dipole interactions. In other (actual or
prospective) applications, molecules seeded into nanodroplets
can serve as antennae with which to relay information to and
from the droplet; for example, structural information about
species being formed in the droplet33 or information about the
onset of superfluidity as a function of droplet size.25,26,34

Indications of the utility of 4He droplets as ultragentle
cryogenic matrixes were apparent even in pioneering spectro-
scopic studies: in 1992 Goyal et al.35 observed unusually narrow
absorption line widths in SF6-seeded nanodroplets. This work
was followed by high-resolution infrared (IR) studies by† Part of the “Giacinto Scoles Festschrift”.
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Hartmann et al.,36 who observed rovibrational fine structure
more typical of gas- than liquid-phase spectra. Although it is
exceptional for a molecule dissolved in a liquid to present
rotationally resolved lines (HF being one exception37) in a 4He
nanodroplet, coherent free rotation over many periods appears
to be the norm.16 Still, the liquid- and gas-phase spectra are not
identical: in most cases, the spectroscopic constants of the
solvated molecule are shifted from their gas-phase values. For
example, SF6 in a 4He nanodroplet exhibits a spherical top
spectrum but with a rotational constant,B, approximately one-
third of B0, its gas-phase value.36

The first calculations of the rotational structure of a molecule
in a 4He cluster were diffusion Monte Carlo (DMC) simulations
for SF6(4He)N clusters.38 From these calculations, it emerged
that a fraction of the helium density in the droplet follows the
rotation of the SF6 molecule adiabatically. In the “adiabatic
following” model that resulted from these calculations, the
observed decrease in the rotational constant is due to the
molecule’s dragging a fraction of the helium density along as
it rotates, thereby increasing its moment of inertia.

A good definition of quantum solvation is that dissolved
molecules are coated by a solvation shell, and at some point,
as a function of the number of solvent atoms, angular momen-
tum coupling with the solvent atoms saturates. This situation
then allows for apparent free rotational motion, albeit with
altered spectroscopic constants.14,38-40 Recently, this has been
studied in more detail in experiments that effectively build up
the quantum solvent He atom by He atom; more precisely,
clusters containing specific numbers of He atoms (e.g., from 1
to 20) can be individually interrogated.40-43 It turns out that
the transition from a “molecular complex” to a “dissolved
molecule” can occur for as few as≈7-12 4He atoms. Various
simulations of the onset of solvation have been made,38,40,44-47

yet the underlying physical mechanism for this transition
continues to be a subject of active research.6,39,40,47

Because the experiments are conducted at ultralow temper-
atures, only the lowest rotational excited states are typically
accessed. However, although this simplifies simulations, the
many-body nature of the system rules out most computational
procedures. Diffusion Monte Carlo methods are one exception
and, in fact, are ideal for computing accurate ground state
energies for very large systems with high accuracy. However,
DMC suffers from the drawback that the calculation of excited
states is not straightforward, and approximations must usually
be introduced. The situation is alleviated somewhat by the
observation that experiments involve only the lowest-lying
excited states. One approach for computing excited states is
fixed-node DMC, in which knowledge of the nodal topology
of the wave function is built into the simulations. The nodal
topology of the excited state being sought after can sometimes
be obtained using known symmetries of the system. For many-
body molecule-4HeN clusters, however, it is necessary to resort
to approximations. A new approach to computing nodes has
recently been developed in which estimates of nodal surfaces
are obtained using a Born-Oppenheimer-like separation of
radial and angular motions.47,48This approach, called adiabatic-
node-diffusion Monte Carlo (ANDMC), was applied to the
quantum solvation of HCN in a small helium-4 droplet.47 For
the binary He-HX complexes considered in this article, we will
utilize ANDMC, and a direct comparison will be made between
adiabatic and accurate nodal topologies.

In ANDMC, radial and angular motions are separated, and
the resulting angular Hamiltonian is then diagonalized to yield
estimates for nodal topologies of the many-body wave function.

Using this method, accurate excited-state rotational energies
were calculated for HCN(4He)N droplets. The adiabatic node
approach also has the advantage that it allows the mechanics
of angular momentum coupling (and decoupling) between
identical bosons and the molecular rotor to be mapped out
explicitly. For HCN(4He)N complexes it was found that, for
small values ofN, there exists significant angular momentum
coupling between the molecule and the helium atoms. However,
because of the bosonic symmetry requirement on the wave
function, asN is increased and solvation becomes almost
complete, the degree of atom-molecule angular momentum
coupling saturates. In particular, for the HCN system, the details
of angular momentum coupling and decoupling were related to
(i) the angular anisotropy of the potential energy surface (PES);
for example, which Legendre polynomials contribute to the PES
in an expansion of the angular coordinates; and (ii) the size of
the rotational constant of the gas-phase molecule.

The reasons why and how these factors are expected to affect
the solvation dynamics can be understood by thinking of seeded
4He clusters as being bosonic “superatoms”. Imagine that the
molecular rotor has infinite mass and the atom-molecule
potential is isotropic. In this limit, the Hamiltonian is essentially
that of an atom except that the “electrons”, that is, the4He atoms,
are bosons, and the form of the “electron-electron” interaction
is quite different from a real atom. Neglecting He-He interac-
tions results in a rough analog of an atom in the central-field
approximation but with bosonic “electrons”. This model has
few computational merits (although it is a useful limit to use in
tests of algorithms) but it does bring into focus the importance
of understanding angular momentum coupling in a seeded4He
cluster. This is entirely analogous to how angular momentum
coupling is central to understanding electronic structure.49

In the actual physical situation, anisotropies of the interaction
potential couple rotational states of the molecule with the orbital
angular momenta of the He atoms. This is in addition to the
smaller couplings between He atoms due to the He-He
interaction potential and to He-molecule-He interactions, etc.
However, the He-molecule couplings will also be modulated
by the size of the gas-phase rotational constant. As was shown
in an earlier study of SF6,38 artificially increasing the gas-phase
rotational constant tends to decouple the molecule adiabatically
from the He atoms and the system effectively behaves increas-
ingly as if the PES were more isotropic. In general, the details
of quantum solvation are, therefore, expected to depend on the
competition between largeB0 values, which tend to enhance
the effective decoupling of the molecule and the solvent, and
large potential anisotropies, which tend to increase the effective
coupling. The current study is directed to quantifying the
importance of these factors by studying clusters seeded with
HF, HCl, and HBr molecules. The vibrational frequency shift
in helium clusters was studied experimentally and theoretically,
using the DMC methods by Blume et al.50

In recent work, Paolini et al.40 investigated the convergence
of the apparent rotational constant of a molecule seeded into a
4He cluster as a function of cluster size. They found that for
HCN seedants, the effective rotational constant did not change
significantly beyondN ∼ 15. This is similar to the case of CO51

and is also in agreement with high-resolution IR spectra recently
obtained for He clusters seeded with CO.43,52 However, these
results differed from earlier expectations of relatively slow
convergence to the nanodroplet limit for light rotors.53

To understand further the relative roles of the size of the gas-
phase rotational constant and the strength and anisotropy of the
He molecule interaction potential, Paolini et al.40 performed
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computations of the solvation of two so-called “fudged”
moleculesf-OCS andf-HCN; that is, OCS and HCN in which
artificially small or large values of the gas-phase rotational
constant were used. This approach is similar to that employed
in the earlier study of SF6.38 They concluded that it is the
strength and anisotropy of the He-molecule interaction, rather
than B0, that is mainly responsible for the reduction of the
rotational constant in the nanodroplet regime. Therefore, the
common classification of molecular dopants in4He clusters into
“heavy” and “light” rotors seems to rely upon a coincidence:
heavier molecules tend to have stronger and more anisotropic
interactions with He.40

To clarify the competing roles ofB0 and the potential
anisotropy further, ANDMC was used47 to trace the saturation
of the bosonic solvent and solute angular wave functions in
HCN-seeded clusters. Convergence of the effective rotational
constant to its asymptotic limit (as a function of cluster size)
was explained in terms of the specific anisotropic contributions
to the interaction potential that lead to specific couplings
between angular momentum basis vectors. It was also shown
that adiabatic nodes substantially improve DMC estimates in
this system. This allowed a mechanism to be put forward to
explain the observed convergence of thea-series of lines
observed experimentally to the nanodroplet limit as well as the
sudden disappearance of theb-series.47 Although the ultimate
explanation for the vanishing of theb-series was similar to that
proposed in other studies,51,54 it was arrived at differently: the
mechanism was couched explicitly in terms of angular momen-
tum coupling arguments. Similar behavior is expected for CO-
seeded clusters, since the CO-He and HCN-He interaction
potentials are similar, as are the molecular constants.52

Rather than using fudged molecules, in the current study, the
solvation dynamics of the three molecules (HF, HCl and HBr)
are studied. The molecules have rather different gas-phase
rotational constants, and the interaction potentials differ in
several subtle but significant ways. An aim of the study is to
test how good variously proposed rules of thumb, for example,
“light-rotor” versus “heavy-rotor”,40 are at predicting system
properties. It might, for example, be expected that HF, having
the largestB0 value, will on solvation exhibit the smallest
reduction in rotational constant of the three molecules. Although
several potential energy surfaces for He-HX (X ) F, Cl, Br)
already exist in the literature,55-59 to make a more consistent
and even-handed comparison, ab initio PESs for all three
complexes are computed and fitted to the same functional form.
We find that (i) it is not only the size of the anisotropy that
matters but also its symmetry; that is, which Legendre poly-
nomials contribute to the angular anisotropy; and (ii) the bosonic
symmetry of the solvent requires that all of the He atoms couple
identically to the molecule. Eventually, the coupling of the atom
and molecular angular momentum saturates and the molecule
solvates.47

The paper is organized as follows: the Hamiltonian is
introduced in Section 2. Details of the calculation of the
intermolecular PESs are also provided in Section 2, together
with the parameters and functions used in an analytical fit to
each surface. The energies of the binary He-HX complexes
are computed in Section 3 using coupled-channel and diago-
nalization methods. Comparison is also made with DMC results.
Details of the DMC approach are contained in Section 4. In
Section 5, He radial and angular density probability distributions
are computed as a function of cluster size. Rotational excited-
state DMC calculations are presented in Section 6. Conclusions
are in Section 7.

2. Hamiltonian and Intermolecular Potentials

In the space-fixed frame, the Hamiltonian forN helium atoms
interacting with an HX molecule (treated as a linear rigid rotor)
is

where rij and RiI denote He-He and He-HX separations,
respectively;θiI is the angle between the molecular axis and
the ith He atom (in the case of the dimer complex, HX-He,
θ1I f θ); M andm are the masses of the HX molecule and the
He atom, respectively; andVHe

He(rij) andV(RiI, θiI) are the He-
He60 and the HX-He PESs, respectively. The molecular
rotational angular momentum operator isj , andB0 is the gas-
phase rotational constant. The various physical constants are
collected together in Table 1.61,62All calculations are performed
in the rigid-body approximation.

2.1. Potential Energy Surfaces.All the calculations to be
described assume pairwise molecule-He and He-He interaction
potentials. For the He-He interaction, the potential energy
surface of Aziz et al. was used.60 The potential is simply a
function of the distance between any two He atoms. Ab initio
PESs of the three He-HX van der Waals complexes were
calculated directly. The He-HF PES has been reported else-
where, along with details of the approach taken, but for
completeness, the parameters for the HF-He PES are also
provided herein.59 Essentially, the three PESs were obtained by
fitting a considerable number of interaction energies obtained
at the Coupled Cluster Singles and Doubles levels, including

TABLE 1: Atomic and Molecular Masses and Molecular
Rotational Constants61,62

atom/molecule mass (a.m.u.) rotational constant (cm-1)
4He 4.002 60
HF 20.006 34 20.560
HCl 36.460 94 10.403
HBr 80.911 94 8.473

TABLE 2: Parameters of the Analytical PES Fitted to the
ab Initio Interaction Energies of the He-HF Complexa

para-
meter value

para-
meter value

C6
0 -0.014 012 380 008 63 g05 -0.025 168 817 8 45 84

C6
2 0.007 937 515 978 14 g10 -3.732 350 583 153 67

b0 13.351 403 472 923 70 g11 -0.488 757 370 932 63
b1 -0.090 562 572 509 10 g12 -0.662 023 973 510 30
b2 0.362 226 204 951 96 g13 -0.611 875 129 971 62
b3 0.107 520 256 279 37 g14 -0.199 329 101 137 73
b4 -0.107 290 933 956 87 g15 0.027 440 366 871 53
b5 0.098 674 150 965 43 g20 1.043 244 478 915 95
d0 -2.531 461 160 701 42 g21 0.094 027 724 972 21
d1 0.074 212 679 748 84 g22 0.201 717 781 047 36
d2 -0.082 760 716 288 34 g23 0.162 295 782 259 88
d3 -0.014 989 938 940 00 g24 0.037 857 162 445 61
d4 0.043 300 762 412 91 g25 -0.006 465 746 084 38
d5 -0.038 020 786 066 27 g30 -0.104 414 332 536 13
g00 4.571 863 773 811 32 g31 -0.004 973 155 718 33
g01 0.753 616 111 944 33 g32 -0.021 530 637 619 04
g02 0.721 394 543 773 71 g33 -0.015 006 582 707 22
g03 0.782 715 129 134 56 g34 -0.001 450 529 992 00
g04 0.296 695 427 359 75 g35 0.000 000 000 000 00

a This set of parameters requires distances (R) to be in Å and will
result in potential values in cm-1. For HF-He C7

1 ) C7
3 ) 0.

H )
-p2

2M
∇ I

2 -
p2

2m
∑
i)1

N

∇ i
2 +

B0 j2 + ∑
i<j

N

VHe
He(rij) + ∑

i)1

N

V(RiI, θiI) (1)
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connected triple corrections. This was done using the augmented
correlation consistent polarized valence quintuple zeta (He-
HF and He-HCl) and the SDB-aug-cc-pVQZ (He-HBr) basis
sets extended with a set of 3s3p2d1f1g midbond functions. These
basis sets were selected after systematic studies carried out at
representative intermolecular geometries. Basis set superposition
error was corrected for using the counterpoise method of Boys
and Bernardi.63,64

The potentials are each found to be characterized by two
minima corresponding to linear configurations, that is, He-
HX and He-XH. The ab initio single-point interaction energies
were then fitted to the analytical functionV(R, θ) originally
suggested by Bukowski et al.65 Here,R ) |R| is the distance
from the He atom to the molecular center of mass (com), and
θ is the angle betweenR and the molecular axis;θ ) 0 andθ
) π correspond to the linear He-HX and He-XH configura-
tions, respectively. The potential energy function is the sum of
two terms: a short-range term,Vsh, and an asymptotic term,
Vas:

where

and

For HF and HCl,n ) 6, whereas for HBr,n ) 6, 7. The∑′
notation means thatl ) 0, 2 (n odd) or l ) 1, 3 (n odd). The
functionsD(θ), B(θ), andG(R, θ) are represented as expansions
in Legendre polynomials,Pl(cosθ):

and

is a Tang-Toennies damping function66 with x ) R × D(θ);
bl, dl, gkl, and theCn

l parameters are all adjustable. The fitted
values of the corresponding PES parameters are presented in
Tables 2-4.The three resulting PESs are shown in Figure 1.
Table 5 provides the locations and well depths of the two
minima for each complex. Several observations can be made.
As the halogen atom increases in size, the He-HX minimum
becomes shallower and moves farther out. Essentially, the
complex is becoming more spherically symmetric as the halogen
atom increases in radius. This observation can be made more

quantitative by expanding the PES in Legendre polynomials,
that is,

Several of the lowest order radial strength functions,67 Vλ(R),
are plotted in Figure 2 for each of the three binary complexes.
It is readily apparent that the contributions ofV1, V2, and V3

decrease relative toV0 as one goes from HF to HCl to HBr.
This observation will prove useful for understanding the excited-
state dynamics of these molecules in small4He clusters.

It is also notable that the deeper minimum corresponds to
the He-HF geometry in the He-HF complex but to He-BrH
in the He-HBr dimer. The He-HCl complex falls between,
with both minima having rather similar binding energies,
although the He-ClH well is slightly the deeper of the two.

V(R, θ) ) Vsh(R, θ) + Vas(R, θ) (2)

Vsh(R, θ) ) G(R, θ)eB(θ)+D(θ)R (3)

Vas(R, θ) ) ∑
n)6

7

∑
l

n-4

′fn(D(θ)R) ×
Cn

l

Rn
Pl(cosθ) (4)

B(θ) ) ∑
l)0

5

blPl(cosθ) (5)

D(θ) ) ∑
l)0

5

dlPl(cosθ) (6)

G(R, θ) ) ∑
l)0

5

(g0l + g1lR + g2lR
2 + g3lR

3)Pl(cosθ) (7)

fn(x) ) 1 - ex ∑
k)0

n |x|k

k!
(8)

TABLE 3: Parameters of the Analytical PES Fitted to the
ab Initio Interaction Energies of the He-HCl Complexa

para
meter value

para-
meter value

C6
0 -0.005 663 57 g05 0.179 848 21

C6
2 -0.003 130 99 g10 -2.922 571 12

b0 13.320 102 38 g11 0.251 622 54
b1 0.342 867 92 g12 -1.216 604 66
b2 0.298 163 63 g13 -0.111 491 31
b3 0.294 258 22 g14 -0.267 531 61
b4 -0.009 346 84 g15 -0.082 111 05
b5 -0.035 407 20 g20 0.682 127 33
d0 -2.100 893 30 g21 -0.082 455 50
d1 0.010 233 81 g22 0.311 774 58
d2 -0.128 177 19 g23 0.000 000 00
d3 -0.010 815 82 g24 0.059 213 84
d4 0.020 431 70 g25 0.009 554 25
d5 0.006 983 61 g30 -0.055 985 98
g00 4.227 609 10 g31 0.008 917 02
g01 -0.224 386 73 g32 -0.027 760 35
g02 1.588 864 95 g33 0.002 509 68
g03 0.318 829 07 g34 -0.004 349 89
g04 0.396 856 27 g35 0.000 000 000

a This set of parameters requires distances (R) to be in Å and will
result in potential values in cm-1. For HCl-He, C7

1 ) C7
3 ) 0.

TABLE 4: Parameters of the Analytical PES Fitted to the
ab Initio Interaction Energies of the He-HBr Complexa

para-
meter value

para-
meter value

C6
0 -425.239 879 082 69 6 g04 0.557 309 473 281

C6
2 -320.525 651 759 54 2 g05 -0.076 662 339 377

C7
1 23.467 575 642 035 g10 -2.879 668 513 147

C7
3 29.052 464 149 358 g11 0.031 420 907 580

b0 13.389 610 799 159 g12 0.746 535 010 188
b1 0.524 091 825 535 g13 -0.531 871 910 461
b2 0.851 082 514 198 g14 -0.345 678 532 980
b3 0.280 259 558 185 g15 0.090 918 816 992
b4 0.275 185 409 402 g20 0.637 568 549 808
b5 -0.224 208 308 256 g21 -0.020 484 094 623
d0 -2.039 697 201 455 g22 -0.148 746 579 592
d1 -0.029 313 071 712 g23 0.103 244 893 893
d2 -0.093 216 954 967 g24 0.075 891 728 285
d3 -0.027 635 075 041 g25 -0.031 802 305 582
d4 -0.064 847 358 666 g30 -0.049 851 078 574
d5 0.062 929 310 818 g31 0.002 751 241 046
g00 4.404 601 847 646 g32 0.010 627 371 755
g01 0.050 846 483 162 g33 -0.006 629 026 827
g02 -1.270 755 306 096 g34 -0.006 071 430 979
g03 0.912 749 039 267 g35 0.003 520 180 843

a This set of parameters requires distances (R) to be in Å and will
result in potential values in cm-1.

V(R, θ) ) ∑
λ

Vλ(R)Pλ(cosθ) (9)
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3. Energy Levels of the HX-He Binary Complexes

Before proceeding to study droplets containing more than one
He atom, it is essential to understand the level structure and
the nodal topology of the wave function of the binary complex.
This is achieved by using (a) coupled channel calculations68

and, so as to obtain accurate wave functions and nodal surfaces,
(b) matrix diagonalization using a product basis of radial×
|jlJM〉 basis vectors, wherej, l, andJ are the rotor, atom, and
total angular momentum quantum numbers, respectively, and
M is the projection of the total angular momentum on the space-
fixed z-axis.67,69

First, it is useful to consider a particular limit, the “isotropic
binary complex” (IBC): If the molecule-4He interaction
potential is isotropic, then the molecular rotational angular
momentum and the atomic orbital angular momentum quantum
numbers,j and l, respectively, are separately conserved, that

is, for the IBC, the labeling scheme|jlJ〉 is exact, and the wave
function is separable; the molecular and atomic parts of the wave
function are spherical harmonics involving the spherical polar
angles in the space-fixed frame. The IBC is used to define our
working set of basis vectors.

Of particular interest, both theoretically and experimentally,
are the nodal functions of the lowest-lying rotational states, for
example, levels withJ ) 1, for which the nodal surfaces of the
IBC states of most interest,|011〉 and|101〉, areΨ iso

(a) ) cosθ2

Figure 1. Contour plots of the potential energy surfaces (a) He-HF,
(b) He-HCl, (c) He-HBr. θ is the angle between the molecular axis
and a vector connecting the com of the molecule and the helium atom.
The H atom lies along the positivez-axis; that is,θ ) 0° for He-HF
andθ ) 180° for He-FH.

Figure 2. Radial strength (expansion) functions for (a) He-HF, (b)
He-HCl, (c) He-HBr PES. As one moves from HF (a) to HBr (c),
the relative importance of theV2 term decreases.R is the distance of
He atom to the com of the molecule.

TABLE 5: Well Depths and Atom-Molecule Separations at
the Two Minima in the Three Dimer PESsa

dimer θ (deg) R (bohr) V (cm-1)

He-HF 0.0* 5.983* -43.844*
180.0 5.667 -26.169

He-HCl 180.0* 6.340* -32.736*
0.0 7.242 -31.160

He-HBr 180.0* 6.446* -37.103*
0.0 7.783 -27.666

a (/) signifies the global minimum.

4He Clusters with HF, HCl, and HBr J. Phys. Chem. A, Vol. 111, No. 49, 200712279



andΨ iso
(b) ) cosθ1, whereθ1 andθ2 are the space-fixed polar

angles of the molecule and atom, respectively. Although it is
legitimate to refer to the nodal functionΨ iso

(b) as the “free-
rotor” node because this node is identical to that of the free
molecule, analogous terminology forΨ iso

(a) does not exist,
because the orbital angular momentum of the atom has to be
referred to some center, in this case, the com of the molecule.
Thus, this node is neither a “free-atom” nor a “free-rotor” node.
The IBC limit also provides a useful labeling scheme with which
to correlate the levels of the anisotropic binary complex in the
space-fixed frame.

Tables 6-8 show a selection of energy levels for the three
dimers using coupled-channel, diagonalization and various DMC
methods, as will be described.

3.1. Coupled-Channel Calculations for the Dimers.Coupled-
channel calculations were performed for the three dimers using
the BOUND program.68 In this procedure, the potential was first
expanded as in eq 9. The quality of the expansion was checked
by (i) comparing contour plots of the accurate potential with
those obtained from the expansion and (ii) examining the
convergence of the computed eigenvalues as a function ofλ
(see eq 9). The radial strength functions were generated using
a Gauss-Legendre quadrature. Coupled-channel (CC) results
for several eigenvalues withJ ) 0 andJ ) 1 are shown in
Tables 6-8 for the three molecules.

3.1.1. Matrix Diagonalization for the Dimers. In the fixed-
node DMC calculations (to be described) for excited states, it
is necessary to have good estimates of nodal surfaces. Previous
work for the HCN-He complex has shown that the nodal
functions of the IBC do not necessarily provide accurate
estimates of the actual nodal geometries.47,53 To gain insight
into the distortion of the IBC nodal topologies due to the
potential anisotropy, accurate eigenfunctions for the binary
complex were computed using a basis set that is a product of
|radial〉 × |angular〉 functions. The total wave function is
expanded,

whereR is the intermolecular distance;Ω1 ) (θ1, φ1) is the
spherical polar angular coordinates of the molecule, andΩ2 )
(θ2, φ2) is the spherical polar angular coordinates of the atom
and {cjl

JM} are expansion coefficients. The radial basis func-
tions,ø(n)(R), wheren is the radial quantum number, were chosen
to be harmonic oscillator eigenfunctions. The angular basis
functionsΦ j,l

J,M(Ω1, Ω2) are defined as follows

where (‚‚‚
‚‚‚) is a Wigner 3-j symbol andYj

mj(Ω1) andYl
ml(Ω2) are

spherical harmonics. Using the expansion in eq 9, the matrix
elements of the potential can be expressed in closed form in
terms of Percival-Seaton coefficients.67 The size of the basis
is determined by the maximum size ofj ) jmax for a givenJ.
The matrix diagonalization results in Tables 6-8 compare
favorably with coupled channel and literature values for states
with J ) 0, 1.

4. Rigid-Body Diffusion Monte Carlo Calculations

The DMC calculations were performed using the rigid-body
diffusion Monte Carlo (RBDMC) method originally developed
by Buch70 and later extended to compute excited states using
importance sampling.38,71 This procedure reduces the number
of degrees of freedom and allows larger diffusive time steps to
be made. The RBDMC approximation is especially suitable for
very weakly bound complexes because of the large difference
in the strengths of the intramolecular and intermolecular forces
and, therefore, in the time scales of the various motions. The

TABLE 6: Ground and Excited-State Energies for the He-HF Dimer in cm-1a

dominant|jlJ〉 CC D DMC1 DMC2 DMC3

|000〉 -6.718 -6.723 -6.720( 0.033 -6.720( 0.033 -6.720( 0.033
|011〉 -5.967 -5.974 -5.987( 0.053
|101〉 33.951 33.980 32.392( 0.117 32.776( 0.107 33.569( 0.142
|111〉 36.758 36.755
|121〉 37.148 37.144

a CC: coupled channel.68 D: matrix diagonalization. DMC: fixed-node DMC using1the appropriate IBC node,2adiabatic, and3accurate nodal
functions. The|jlJ〉 labeling scheme is exact only for the isotropic binary complex.

TABLE 7: Ground and Excited-State Energies for the He-HCl Dimer in cm -1a

dominant|jlJ〉 CC D DMC1 DMC2 DMC3

|000〉 -7.753 -7.761 -7.748( 0.033 -7.748( 0.033 -7.748( 0.033
|011〉 -7.214 -7.213 -7.206( 0.041
|101〉 12.765 12.805 12.328( 0.057 13.526( 0.057 12.505( 0.061
|111〉 14.964 14.977
|121〉 15.220 15.251

a CC: coupled channel.68 D: matrix diagonalization. DMC: fixed-node DMC using1the appropriate IBC node,2adiabatic, and3accurate nodal
functions. The|jlJ〉 labeling scheme is exact only for the isotropic binary complex.

TABLE 8: Ground and Excited-State Energies for the He-HBr Dimer in cm -1a

dominant|jlJ〉 CC D DMC1 DMC2 DMC3

|000〉 -7.873 -7.881 -7.861( 0.076 -7.861( 0.076 -7.861( 0.076
|011〉 -7.406 -7.414 -7.412( 0.034
|101〉 8.078 8.091 7.904( 0.081 8.561( 0.057 7.781( 0.131
|111〉 10.463 10.455
|121〉 10.569 10.548

a CC: coupled channel.68 D: matrix diagonalization. DMC: fixed-node DMC using1the appropriate IBC node,2adiabatic and3accurate nodal
functions. The|jlJ〉 labeling scheme is exact only for the isotropic binary complex.

Ψ ) R-1∑
a

cjl
JM Φ j,l

JM(Ω1, Ω2)ø
(n)(R) (10)

Φ j,l
J,M(Ω1, Ω2) ) ∑

mj,ml

(-1)j-l+Mx(2J + 1) ×

( j l J
mj ml -M )Yj

mj(Ω1)Yl
ml(Ω2) (11)
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basic idea in RBDMC is to recognize that for sufficiently small
rotations, the rotational energy propagator is analogous to the
translational kinetic energy propagator with a diffusion constant
DR ) 1/2I where I is the moment of inertia of the molecule.
This procedure takes advantage of the fact that components of
angular momentum commute for sufficiently small rotations.
In the current application, all translations and rotations are made
in a rotor-fixed frame, that is, rotational moves are done around
the set of principal axes of the HX com, which rotates along
with the rigid HX molecule.

In RBDMC, excited rotational states are computed using the
fixed-node method:72,73 in essence, this involves “killing”
walkers that cross nodal surfaces. In the simulations, importance
sampling was used, as is now described.

4.1. Importance Sampling.In importance sampling, a trial
wave function,ΨT, is introduced to guide the diffusion process.
This improves the efficiency of the DMC method and increases
the precision of the computed energies.72 For larger He clusters,
unphysical dissociation may occur unless importance sampling
is used. Use of a guiding trial wave function leads to a diffusion-
like equation for the mixed functionf(R, r i) ) Ψ(R, r i)ΨT(R,
r i), whereR andr i are the molecular and He atom coordinates
respectively. Additional drift terms (quantum forces) that guide
the walkers to regions of high probability density74 are
introduced into the diffusive process. In this work, trial wave
functions were chosen to have the form

whereRi is the radial distance from the molecular com to helium
atomi andrij is the distance between helium atomsi andj. As
in previous work,38,47,53 the radial functions were of the
following form.

The parametersa, b, and c were obtained by fitting the
functionf(R) to (i) accurate binary wave functions obtained from
diagonalization or (ii) adiabatic radial functions. The two
approaches provided similar results. For ground-state calcula-
tions, the angular functionΥ(Ω1, Ω2) was set to unity, whereas
for excited states, this function contains the nodal topology.
However, for some nodal functions used in which the full set
of space-fixed angles appear, it was found preferable simply to
kill walkers that crossed the node using a recrossing correction.
This was done to avoid the computation of derivatives of the
nodal part of the wave function, which has to be done
numerically. We found that using numerical derivatives intro-
duced errors into the diffusion process as well as slowed it down
considerably. Pilot calculations demonstrate that killing walkers
at the nodes without building the nodal structure explicitly into
the trial wave function provides excellent results. The He-He
part of the trial wave function,¥(rij), was the same as that used
in previous studies.38,53

5. Ground State Properties

We performed systematic studies of ground states properties,
that is, energy levels and radial and angular distributions, for
all three HX complexes with various numbers of helium atoms,
by means of unbiased RBDMC.

5.1. The Three Dimers.The most obvious difference among
the three dimers, He-HF, He-HCl, and He-HBr, is in the
ordering of the potential minima. Table 5 indicates that for He-
HF, the configuration He-HF has a deeper well than does He-

FH; for He-HCl and He-HBr, this ordering is inverted. Figures
3-5 compare the He density computed for the three complexes
assuming that the gas-phase rotational constantB0 ) 0 with
those obtained using the physical values. In the case of no
rotation (B0 ) 0), the density for HF and HCl is primarily
concentrated at the H atom end of the HX molecule, whereas
for HBr, the opposite is the case. The finding that the He-HCl
configuration is favored over the He-ClH configuration agrees
with the results of Murdachaew et al.57 obtained using a different
PES. This was attributed to the greater volume of the shallower
well in the He-HCl configuration; that is, despite the well’s
being shallower, the volume of phase space is greater at the H
end of the molecule. It should also be noted that the ground
state of the HCl-He dimer actually liesaboVe the saddle point
of the PES.

5.2. Radial and Angular Distributions. Figures 6-8 show
the radial probability functions as a function of number of He
atoms. The corresponding angular probability functions are
shown in Figures 9-11. These plots were obtained by projection
of the He density from converged unbiased RBDMC calcula-
tions into a frame in which the molecule is aligned along the
space-fixedz-axis with the H atom along the positivez-axis.
The radial and angular distributions were computed using the
ground-state probability density,|〈x|100〉|2.

For a given He-HX complex, all radial distribution functions
peak around the sameR value. This finding suggests that up to
N ) 15, He atoms fill up only the first solvation shell around
the molecule, and the second solvation shell has not yet begun.

It is apparent from Figures 9-11 that forN ) 1, though
delocalized, the density switches primarily from the H end of

ψT ) {∏
i)1

N

f(Ri) ∏
i*j

N

¥(rij)}Υ(Ω, θi, φi) (12)

f(R) ) b exp(- c

R5
- aR) (13)

Figure 3. Density distributions of DMC walkers superimposed on the

PES of He-HF in cylindrical coordinates,F, z, whereF ) xx2+y2.
(a) B ) 0 and in (b)B ) B0, whereB0 is the physical (gas-phase)
value of the rotational constant. The H atom of the HF molecule lies
along the positivez-axis. In panel (a), the DMC walkers gather around
the potential minimum, whereas in panel (b), walkers spread out more
as a result of rotation of the molecule, indicative of larger decoupling
between the molecule and helium. The color scale shows the density
of walkers and goes from orange (low) to blue (high) color. Contours
are of the PES in cm-1.
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the molecule in HF and HCl to the halogen end in HBr. For
larger numbers of He atoms, the majority of the density in all
cases is concentrated in a broad donut shape around the waist
of the molecule. The effect of the relatively large value ofB0

for all three molecules is clearly reflected in the significant
delocalization of the He density, as compared to the case that
B ) 0. Given the largeB0 values, one would expect a rather
modest decrease in the effective rotational constant for these
molecules in a helium-4 nanodroplet. In fact, for HF,Beff ∼
98%.16,75Simply on the basis of the size ofB0, one would expect

somewhat larger percentage reductions for HCl and HBr. This
is the subject of the next section.

6. Excited States

Excited states were computed using fixed-node DMC and,
in particular, the ANDMC method proposed by Mikosz et al.47

In this approach, improved (as compared to the IBC) estimates
of nodal surfaces are obtained by making an adiabatic separation
of radial and angular motions. The excited states computed using
different fixed nodes in the DMC procedure are collected
together in Tables 6-8. The differences between the results can
be entirely attributed to differences in the quality of the nodal
topology used. Even when an accurate nodal surface is
employed, there is some deviation from the accurate result; this
is related to the fact that, even with a numerically exact node
to hand, approximations are nevertheless present in the fixed-
node procedure. For example, recrossing corrections can be used
to improve accuracy. However, this is technically difficult to
do in the case that the nodal topology is complicated, as in the
current application.

In the current study, the computations are done for clusters
containing up toN ) 20 He atoms. In principle, much larger
clusters could be studied using Monte Carlo methods. However,
as the number of particles increases, the error bars on the
energies also increase. BeyondN ) 20, it becomes very difficult
to converge the effective rotational constant, which is obtained
from calculating the difference between the ground and excited
rotational states. However, because quantum solvation (i.e.,
saturation ofBeff) may occur relatively rapidly as a function of
N,40,51,52 although larger clusters may exhibit interesting fea-
tures,43 we expect that the essential angular momentum coupling
and decoupling mechanism will be captured in these simulations.

6.1. Nodal Surfaces of the Dimers, He-HX. The topologies
of the wave functions can best be understood by considering
the expansion of the PES in Legendre polynomials in eq 9. Plots
of the first four dominantVλ(R) functions are shown in Figure
2. TheP1 term mixes zero-order basis states with∆j, ∆l ) (1.
For the three dimer complexes, the free-rotor state|101〉 is
coupled most strongly to|011〉 by theP1 anisotropy, whereas
the P2 anisotropy leads to admixtures containing primarily
|121〉.67 Unlike in the case of He-HCN,47 the dominant potential
anisotropy for the three complexes arises from theP2 term in
eq 9. Furthermore, as one moves through the series HeHF-
HeHCl-HeHBr, the minimum in the corresponding strength
function, V2(R), moves closer to the minimum inV0(R) while
its well depth becomes shallower in comparison toV0.

Figure 12 is a representation of the probability density of
the space-fixed wave function,|〈x|101〉|2 for the HF-He dimer
obtained from diagonalization. The nodal surface is clearly
apparent and corresponds roughly to the planeθ1 ≈ π/2. This
can be traced to the dominance of theP2 radial strength function.
The plots are similar for the HCl-He and HBr-He dimers. In
these three cases, and again unlike for HCN, the “free-rotor”
nodal surface provides a reasonable approximation to the actual
dimer node. Note that the “free-rotor” approximation improves
as the one goes from HF to HCl to HBr. This is apparent upon
comparing the rotational energies obtained using the free-rotor
nodal function in DMC with accurate results in Tables 6-8.
As the mass of the system increases, the wave function becomes
somewhat more localized, which tends to “clean up” the
node. In addition, the system is becoming somewhat more
isotropic, that is, the nonspherical radial strength functions
contribute less. For more than a single He atom, the nodal
surfaces can be estimated using the adiabatic procedure now
described.

6.2. Adiabatic Nodal Functions.Holmgren et al.48 developed
an adiabatic, that is, Born-Oppenheimer-like, angular-radial

Figure 4. Same as Figure 3, but for He-HCl.

Figure 5. Same as Figure 3, but for He-HBr.
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Figure 6. Radial distribution functions,D(R) ) 4πR2R(R)2 for HF-HeN clusters, whereR is the distance between the com of the molecule and the He atom,R(R)
is the radial part of the wave function, andN is the number of He atoms solvating the diatom. All probabilities are normalized to unity.

Figure 7. Same as Figure 6, but for He-HCl.
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separation (BOARS) in the molecule fixed frame for van der
Waals atom-molecule dimer complexes. In BOARS, the radial
degree of freedom is frozen atR ) R0, and the angular part of
the resulting Schro¨dinger equation is then solved; this is repeated
for different values ofR0, which generates families of adiabatic
radial potentials. The adiabatic potentials are then used to solve
for the radial wave functions. Although the BOARS approach
has generally been superseded for atom-molecule (dimer) van
der Waals complexes, it nevertheless can be adapted to provide
a convenient and accurate way of generating good estimates of
nodal surfaces for small molecule-helium clusters.47 The
method is also computationally quite efficient because the
angular matrix elements can be computed analytically or
semianalytically.67,76

Adiabatic nodal functions are computed by making the
following assumptions: (i) He-He interactions are ignored (for
ground states withN ) 10, for example, these contribute<5%
to the energy); (ii) fixR ) R0; (iii) pin the molecular com in
place; (iv) for more than a single He atom, the adiabatic
separation is done in the space-fixed frame.

The resulting Hamiltonian is the following

whereκ ) 1/2mR0
2. DiagonalizingHrot at fixed J andN thus

produces estimates for the nodes. The value ofR0 is chosen to
be the minimum of the appropriate adiabatic radial potential.
Alternatively,Rcan be treated as a free parameter for the dimer
and varied to obtain the best agreement with accurate results.
This value is then used for clusters containing more than one
He atom.

e;1.0qDiagonalization involves the coupling ofN + 1 angular
momenta. For example, consider the case that four (rotor+

three He atoms) angular momenta are involved, that is,j , l1, l2,
l3 where the quantum numbersj, mj refer to the rotor andli, mi,
i ) 1, 2, 3 to the He atoms. Because the He atoms are equivalent,
the following angular momentum coupling scheme is used. Form
the intermediate angular momenta,l12 ) l1 + l2, l123 ) l12 + l3,
and then form the total angular momentum,J ) j + l123. The
basis functions can then be expressed in terms of generalized
Clebsch-Gordan coefficients; for example, forN ) 3, the basis
functions may be written49,77-79

where C(l1m1 ... l123m123jmjJM) is a generalized Clebsch-
Gordan coefficient77 andΩj,i refer to the space-fixed coordinates
of the several rotors. Explicitly,

The matrix elements ofHrot are computed using the Wigner-
Eckhardt theorem.67,77,79

In previous work on HCN complexes, the value ofR used
was chosen to correspond to the minimum of the adiabatic radial
potential.47 Inspection of the PESs in Figure 1 indicates that as
one moves from HF to HCl to HBr, the two potential minima
move to differentR values relative to each other. This radial
distortion suggests that use of a singleR value to define the

Figure 8. Same as Figure 6, but for He-HBr.

Hrot ) B0j
2 + ∑

i)1

N

κl i
2 + ∑

i)1

N

V(R0, θiI) (14)

ψ jl1l2l3l12l123

JM ) ∑
mj,m1,m2,m3

N

C(l1m1 ... l123m123jmjJM) ×

Yj
mj(Ωj)Yl1

m1(Ω1)Yl2

m2(Ω2)Yl3

m3(Ω3) (15)

C(jmjl1m1l2m2l3m3l12m12l123m123JM) )

∑
m12,m123

(-1)l12-m12+l123-m123 × ( l1 l2 l12

m1 m2 -m12
) ×

( l3 l12 l123

m3 m12 -m123
) × ( j l123 J

mj m123 -M ) (16)
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node might be a less good approximation in HF than HBr. In
fact, for the nominal|101〉 state, both the free-rotor (cosθ1)

and “singleR” adiabatic nodes provide reasonable agreement
with accurate results. However, some improvement can be

Figure 9. Angular distribution functions,F(θ) ) 2πY(θ)2 sin θ for HF-HeN clusters, whereθ is the angle between the molecular axis and the
vector R connecting the molecule com and the He atom, andY(θ) is the θ-dependent part of the angular part of the wave function. Here, 0°
corresponds to the H end of the molecule. All probabilities are normalized to unity.

Figure 10. Same as Figure 9, but for He-HCl.
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achieved by using the following procedure to generate adiabatic
nodal surfaces:

(1) Generate adiabatic wave functions on a grid ofR values.
(2) The adiabatic wave function is then represented as

(3) Finally, the expansion coefficients,c(R), are fitted to an
analytical form. In practice, Morse potential forms provide an

Figure 11. Same as Figure 9, but for He-HBr.

Figure 12. Three-dimensional scatter plot of the probability density of the|101〉 space-fixed state obtained from diagonalization for the He-HF
dimer, that is,|〈x|101〉|2. The anglesθ1 andθ2 are the space-fixed polar angles of the HF molecule and the He atom, respectively, in radians;φ )
φ1 - φ2 is the relative azimuthal angle;R is the distance, in atomic units (a.u., i.e., bohrs), between the He atom and the HF center of mass. To
generate the plot, 20 000 points were chosen randomly in (θ1, θ2, φ, R) space with 4< R < 10 bohr. Points in (R, θ1, θ2) space are represented by
spheres whose size is proportional to|〈x|101〉|2. Each sphere is colored according to its value ofφ as indicated in the color scale bar. The equilibrium
value ofR is ∼ 6 bohr. The planeθ2 ) π/2 does not correspond to a nodal surface because the wave function does not change sign as one crosses
this surface. The nodal surface is roughly the same as the “free-rotor” node; that is, the planeθ1 ) π/2.

ψ(Ω1, Ω2; R) ) ∑c(R)ψ jl1l2l3l12l123

JM (Ω1, Ω2; R) (17)
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accurate fit over the range of interest. The functionψ in eq 17
is then used to define the nodal function in the trial wave
function.

The result of using adiabatic nodes is shown for the three
dimer complexes in Tables 6-8. For more than a single He
atom, adiabatic nodes provide results that are very similar to
when the free-rotor node is employed. Figure 13 shows values
of the rotational energy of the states that evolve from|101〉 for
the three HX molecules as a function of the number of He atoms,
N. Energies are expressed in terms of “2Beff”. Note that byN
) 20 for both HCl and HBr,Beff for HF is similar to the
experimental nanodroplet limit, albeit for theV ) 1 state of
HF. The results shown in Figure 13 were obtained using a free-
rotor nodal function. In this case, adiabatic nodal functions give
very similar results, especially forN g 2. This contrasts sharply
with the situation for HCN in which the free-rotor node provides
poor agreement with accurate results for small number of He
atoms.47 This result can be understood in terms of the contribu-
tions of the different anisotropic components of the PES: He-
HCN and He-CO are “P1”-type dimers, whereas the He-HX
complexes are dominantlyP2-type (see Figure 2).

6.3. Nodal Decoupling.The transition from the relatively
strong coupling in the dimer to the solvated molecule can be
understood in terms of angular momentum coupling between
the molecule and the He atoms. Consider first the dimer, that
is, N ) 1. ForJ ) 1, the dominant states are|011〉 and |101〉.
The P1 term mixes zero-order basis states with∆j, ∆l ) (1
and to lowest order, the resulting states have the form|a〉 )
c1|011〉 + c2|101〉, |b〉 ) -c2|011〉 + c1|101〉 with |c1|2 + |c2|2
) 1. By contrast, theP2 anisotropy leads mainly to admixturesof
|101〉 and |121〉. The corresponding wave functions can be
written explicitly as follows:

whereφ ) φ1 - φ2 and the subscript “1” (2) refers to the angular

coordinates of the molecule (atom). ForN He atoms, the|121〉
state is replaced by a symmetric linear combination of states
having He orbital angular momenta permuted over theN He
atoms; for example,|jl1l2l3l12JM〉 ) |120020JM〉, |102020JM〉,
etc. Denoting these normalized “solvent” states by|s〉/xN and
“molecule” states of the form|10...00...0JM〉 by |j〉, the
eigenvector mixtures to lowest order are the same as forN )
1. For example,

The factor of 1/xN diminishes the contribution of each
individual He atom asN increases. Furthermore, asN increases,
the trigonometric terms will approach their average values; that
is, the free-rotor “cosθ1” term will emerge. In fact, as Figure
12 shows, the free-rotor node is quite good, even forN ) 1.

7. Conclusions

Ground- and excited-state properties were computed for the
HX(4He)N, complexes withN ) 1 - 20 andX ) F, Cl, Br. The
calculations used pairwise intermolecular potentials specifically
computed for the He-HX interactions and fitted to similar
functional forms. Intermolecular energies and ground-state He
radial and angular probability density distributions were com-
puted. Excited states were calculated using a fixed-node DMC
procedure. Molecule-solvent angular momentum coupling was
studied as a function of cluster size and potential anisotropy.
The calculations suggest that the observed decrease in the gas-
phase rotational constants for HCl and HBr in a helium-4
nanodroplet will be smaller than for HF, despite HF’s having a
considerably larger rotational constant than the other two
molecules.

Generally, these results can be explained in terms of the
interplay between the various anisotropies of the potential energy
surfaces shown in Figure 2 for the HF-He, HCl-He, and HBr-
He potentials. In contrast to HCN47 and CO, for which theP1

and P2 anisotropies compete, for quantum solvated hydrogen
halides, theP2 anisotropy dominates. The solvation behavior
of the three molecules can be traced to how the potential
anisotropies couple angular momentum states between the
molecule and the bosonic helium-4 atoms. Although HF has a
rotational constant that is almost double that of HCl, the
somewhat larger anisotropy of the PES leads to a small
asymptotic decrease in the effective rotational constant, whereas
HCl and HBr approach their gas-phase values in the nanodroplet
limit.
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